首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8024篇
  免费   1449篇
  国内免费   2805篇
测绘学   276篇
大气科学   477篇
地球物理   1904篇
地质学   6478篇
海洋学   349篇
天文学   12篇
综合类   407篇
自然地理   2375篇
  2024年   10篇
  2023年   91篇
  2022年   295篇
  2021年   372篇
  2020年   435篇
  2019年   449篇
  2018年   454篇
  2017年   331篇
  2016年   449篇
  2015年   469篇
  2014年   605篇
  2013年   671篇
  2012年   562篇
  2011年   653篇
  2010年   579篇
  2009年   632篇
  2008年   617篇
  2007年   617篇
  2006年   706篇
  2005年   515篇
  2004年   484篇
  2003年   416篇
  2002年   386篇
  2001年   309篇
  2000年   216篇
  1999年   171篇
  1998年   152篇
  1997年   129篇
  1996年   106篇
  1995年   77篇
  1994年   68篇
  1993年   54篇
  1992年   54篇
  1991年   38篇
  1990年   27篇
  1989年   21篇
  1988年   16篇
  1987年   9篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
102.
黄土高填方场地地震动参数特性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
来春景  朱彦鹏  王春青  马天忠 《地震工程学报》2018,40(6):1168-1173,1223
削山造地后形成的黄土高填方场地对地震动参数特性影响较大。以实际工程项目为研究对象,构造不同填土高度的计算剖面,采用一维等效线性化方法计算土层地震动参数,分析基岩地震动输入参数和填土高度对场地地表放大效应的影响。研究表明:场地地震放大系数随填土层的高度增加呈递减趋势。在多遇地震动和基本地震动作用下,场地地震放大系数递减速度比罕遇地震动和极罕遇地震动作用下要大。当填土高度达到一定程度后放大效应趋于平稳;填土高度的变化,会改变地表加速度反应谱的形状。填土高度越大,地表反应谱长周期的频谱成分越显著,反应谱曲线向后移,反应谱峰值点均明显向长周期移动,并出现多个峰值点,反应谱特征周期值变大;下伏基岩的刚度越大,地表峰值加速度的放大效应越大。地表加速度反应谱特征值相比变小。当填土高度增大到一定程度时,下伏基岩的种类对地表地震动特性影响则不明显。该研究成果对高填方场地的地震安全评价和结构抗震设计提供参考。  相似文献   
103.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
104.
Concentrated erosion, a major feature of land degradation, represents a serious problem for soil and water resources management and a threat to ecosystems. Understanding the internal mechanisms (de-)coupling sediment pathways can improve the management and resilience of catchments. In this study, concentrated erosion and deposition forms were mapped accurately through field and aerial unmanned aerial vehicle (UAV) campaigns, in order to assess the evolution of connectivity pathways over a series of three contrasted and consecutive flood events occurring between October 2016 and January 2017 (return period ranging from 0.5 to 25 years) in a small Mediterranean agricultural catchment (Can Revull, Mallorca, Spain; 1.4 km2). In addition, a morphometric index of connectivity (IC) was used to identify the potential trajectories of different concentrated erosion forms and deposition areas. IC predictions were calibrated by identifying the optimal critical thresholds, i.e. those most consistent with field observations after each of the events studied. The results found that the index performed well in predicting the occurrence and the length/area of the different type of landforms, giving kappa (κ) coefficients of variation ranging between 0.21 and 0.92 and linear correlations R2 between 0.33 and 0.72. The type of landform affected the correspondence of IC predictions and field observations, with lower thresholds the greater the magnitude of their associated geomorphic processes. Rainfall magnitude proved to be a very important factor controlling the development of erosion and deposition landforms, with large differences in length/area between the contrasted events. The evolution of the observed trajectories revealed feedback dynamics between the structural and functional connectivity of the catchment, in which morphological changes determined the spatial distribution of the processes’ activity in the successive events and vice versa. © 2020 John Wiley & Sons, Ltd.  相似文献   
105.
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.  相似文献   
106.
利用鄂伦春自治旗东部主要耕地区1:25万土地质量地球化学调查数据,查明了研究区内表层和深层土壤有机碳储量和有机碳密度分布特征,分析了研究区内土壤有机碳储量、有机碳密度与土壤类型、土地利用方式之间的关系,探讨了土壤类型和土地利用方式对土壤有机碳的作用机理.结果表明研究区内土壤有机碳含量分布不均,土壤类型和土地利用方式是土壤有机碳储量和有机碳密度的主要影响因素.  相似文献   
107.
In this study, sea surface salinity(SSS) Level 3(L3) daily product derived from soil moisture active passive(SMAP)during the year 2016, was validated and compared with SSS daily products derived from soil Moisture and ocean salinity(SMOS) and in-situ measurements. Generally, the root mean square error(RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the sea surface temperature(SST). Then, a regression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product.  相似文献   
108.
109.
Most structures are subjected to more cyclic loads during their life time than static loads. These cyclic action could be a result of either natural or man-made activities and may lead to soil failure. In order to understand the response of the foundation and its interaction with these complex cyclic loadings, various researchers have over the years developed different constitutive models. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model-based identification of the cyclic constitutive parameters which to a large extent govern the quality of the model output. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimisation strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However, for the back analysis (calibration) of the soil response to oscillatory load functions, this article gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high-quality solutions are obtained with minimum computational effort.  相似文献   
110.
基于中国587站日最高、最低气温观测资料、月平均的ERA_interim土壤湿度(Soil Moisture,SM)再分析资料及扩展重建的海表面温度(Sea Surface Temperature,SST)资料(ERSST),对极端气温指数进行了定义,利用变形的典型相关分析和集合典型相关分析方法(Ensemble Canonical Correlation,ECC),分析了1979-2009年我国夏季极端气温与前期(春、前冬)SM、SST间的线性联系,建立了中国夏季极端气温预测模型,并对独立样本检验的效果进行了评估。结果表明:1)与中国夏季极端气温联系密切的前期SST异常的空间分布为类PDO(Pacific Decadal Oscillation)型,前期土壤湿度异常的区域为华南、青藏高原、东北和西北地区。2)交叉检验结果表明基于前冬预测因子的极端气温预测模型技巧高于春季,基于SM的极端气温预测模型技巧高于SST。3)独立样本检验表明基于前期SM、SST的ECC模型对中国东部夏季极端气温有一定的预测能力。因此,可以在夏季极端气温的预测业务中考虑前期SM、SST的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号